Renewable energy generation is becoming more prevalent on today's electric grid. The challenge of increasing the percentage of renewable energy will be dealing with the intermittent nature of renewable sources. This book provides collective information on various solar energy conversion techniques useful for academicians, researchers, and society at large. The understanding of each technology and its associated challenge provides a suitable basis to recognize advantages and drawbacks. More importantly, it gives the technological development of Linear Fresnel Reflector Mirror (LFRM) concentrator. In this book, a study considering the replacement of EWH by Concentrating solar Photovoltaic and thermal system (CSPV/TS) in the highlands of Yerevan region is presented. Analyses demonstrates that electricity and heating domestic water via solar (CSPV/T) energy is simple, reliable, and cost-effective. The model is used to analyze the performance of LFRM concentrating collector parameter such as reflector length, aperture diameter, PV/T receiver, focal distance and temperature at the PV/T receiver with different solar irradiations to increase the thermal efficiency.

LFRM-Based Type Concentrating Solar Ene

Mohamed Ramadan Gomaa Behiri Ruben Vardanyan

Mohamed Ramadan is a lecturer in the Dept. of Mech. Eng., Benha University. In 2011, he did receive his PhD degree on solar power concentrating systems from State Engineering University of Armenia, Yerevan-Armenia. In 2003 and 2007, he did receive his BSc and MSc degrees, respectively, in Mech. Power Eng. & Energy from Faculty of Eng., Minia Uni..

Gomaa Behiri, Vardanyan

Multi–Mirror Solar Energy Concentrating PV/T System Design

Power Plants Based on Concentrating Solar Energy Systems

Mohamed Ramadan Gomaa Behiri Ruben Vardanyan

Multi–Mirror Solar Energy Concentrating PV/T System Design

Mohamed Ramadan Gomaa Behiri Ruben Vardanyan

Multi–Mirror Solar Energy Concentrating PV/T System Design

Power Plants Based on Concentrating Solar Energy Systems

LAP LAMBERT Academic Publishing

Impressum / Imprint

Bibliografische Information der Deutschen Nationalbibliothek: Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Alle in diesem Buch genannten Marken und Produktnamen unterliegen warenzeichen-, marken- oder patentrechtlichem Schutz bzw. sind Warenzeichen oder eingetragene Warenzeichen der jeweiligen Inhaber. Die Wiedergabe von Marken, Produktnamen, Gebrauchsnamen, Handelsnamen, Warenbezeichnungen u.s.w. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutzgesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Bibliographic information published by the Deutsche Nationalbibliothek: The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Any brand names and product names mentioned in this book are subject to trademark, brand or patent protection and are trademarks or registered trademarks of their respective holders. The use of brand names, product names, common names, trade names, product descriptions etc. even without a particular marking in this work is in no way to be construed to mean that such names may be regarded as unrestricted in respect of trademark and brand protection legislation and could thus be used by anyone.

Coverbild / Cover image: www.ingimage.com

Verlag / Publisher: LAP LAMBERT Academic Publishing ist ein Imprint der / is a trademark of OmniScriptum GmbH & Co. KG Bahnhofstraße 28, 66111 Saarbrücken, Deutschland / Germany Email: info@omniscriptum.com

Herstellung: siehe letzte Seite / Printed at: see last page ISBN: 978-3-659-89741-2

Copyright © 2016 OmniScriptum GmbH & Co. KG Alle Rechte vorbehalten. / All rights reserved. Saarbrücken 2016

CONTENTS

Page

Contents		1
List of Tables		5
List of Figures		6
Nomenclature		11
INTRODUCTION		14
CHAPTER (I)	ANALYSIS OF EXISTING SOLAR	10
	CONCENTRATING SYSTEMS	18
1.1	Motivation	18
1.2	The Sun	20
1.3	Solar Energy	21
	1.3.1 Solar Radiation	21
1.4	Applications of Solar Energy Technology	23
	1.4.1 Solar Thermal Energy	23
	1.4.2 Principle Work Of Solar Collector	26
	1.4.3 Solar Photovoltaic Energy	27
	1.4.3.1 PV and p-n junction diode constructions	29
	1.4.3.2 Semiconductor	31
	1.4.4 III – V Multijunction Solar Cell and Periodic Table \dots	32
	1.4.5 Current-Voltage Curve Characteristic	34
	1.4.6 Concentrator Solar Cells	36
1.5	Concentrating Solar Energy	39
	1.5.1 Limits To Solar Concentration	42
	1.5.2 Effects of concentration on cell parameters	42
	1.5.3 Effects of cell series resistance under concentration	43
	1.5.4 Concentrator Solar Energy Systems	43
	1.5.5 Effect of Temperature on Solar PV System	52
1.6	Combined Solar Photovoltaic and Thermal (PV/T) Energy .	54
	1.6.1 Water Cooled PV/T	55
	1.6.2 Air Cooled PV/T Collectors	57
	1.6.3 Concentrating PV/T Collectors	57
1.7	Heat Transfer Theory	58

	1.7.1 Convective Heat Transfer For Internal Flow
	1.7.2 Convective Heat Transfer For External Flow
1.8	Energy Gain in Tracking Systems, And Sun - Tracking
	Methods
1.9	Storage Systems
	1.9.1 Heat Storage
	1.9.1.1 Molten salt storage systems
	1.9.1.2 Latent heat storage systems
	1.9.1.3 Liquid metal sensible heat storage systems
	1.9.2 Battery Energy Storage Technology
	1.9.3 Hydroelectricity Storage System
1.10	Conclusion
CHAPTER (II)	THEORETICAL WORK
2.1	Introduction
2.2	Energy Value Comparison
	2.2.1 Comparison of Methods
	2.2.2 Optimization Methodology
2.3	The New CPV/T Collector Component
2.4	Design Consideration for Linear Fresnel Reflecting
	Concentrator
	2.4.1 Analytical Technique
	2.4.2 Ray Trace Technique
2.5	Thermal Processes Analysis
	2.5.1 Passive Cooling System
	2.5.1.1 Heat loss through radiation and natural convection
	2.5.2 Active Cooling System
	2.5.2.1 Performance analysis
2.6	Computer Program for Optimization a CPV/T Systems
	Design
	2.6.1 FORTRAN Simulation Computer Program
	2.6.2 CPV-CAD Computer Program

2.7	Results and Discussion)5
	2.7.1 Characteristics Discussion of a LFRSC system	95
	2.7.2 Receiver Design and Performance Results 1	03
2.8	Performance Results for A Concentrator Photovoltaic /	
	Thermal (CPV/T) Collector 1	04
2.9	Comparison and Validation of the CPV/T Simulation	
	Program with CPV-CAD Program Results 1	15
2.10	Conclusion 1	18
CHAPTER (III)	EXPEREMENTAL WORK 1	21
3.1	Introduction	21
3.2	Experimental Setup 1	21
	3.2.1 Concentrator System 1	23
	3.2.1.1 Mirrors	23
	3.2.2 CPV / T Collector 1	24
	3.2.2.1 Monocrystalline solar cells 1	24
	3.2.2.2 Thermal receiver 1	25
3.3	Instrumentation and Measuring Techniques 1	26
	3.3.1 Temperature Measurement 1	26
	3.3.2 Calibration of Temperature Instrumentation 1	27
	3.3.3 Current-Voltage (J-V) Measurement 1	28
	3.3.4 Thermal Measurements 1	31
3.4	Experimental Results for the CPV/T Collector 1	32
	3.4.1 Solar Radiation and Ambient Temperature 1	32
	3.4.2 J-V Characteristics, Fill Factor and Electrical	
	Efficiency 1	32
	3.4.3 Thermal Performance 1.	35
3.5	Measured Efficiency	36
3.6	Cost analysis 1	41
3.7	Evaluation of Measurement Uncertainties 14	44
	3.7.1 Measured Quantities	45
	3.7.1.1 PV cells dimensions 1	45
	3.7.1.2 Actual collector dimensions 14	46
	3.7.1.3 Voltage measurements	46

	3.7.1.4 Shunt resistance
	3.7.1.5 Temperature measurements
	3.7.2 Calculated Quantities
	3.7.2.1 PV cells area
	3.7.2.2 Collector projected area (actual area)
	3.7.2.3 Maximum electrical power
	3.7.2.4 Water temperature rise
	3.7.2.5 PV cells efficiency (electrical efficiency)
	3.7.2.6 Thermal output (cooling water)
	3.7.2.7 Thermal efficiency
3.8	Conclusion
MAIN CONCLUSION	Ν
REFERENCES	
APPENDIX (A)	FORTRAN CODES FOR THE CPV/T COLLECTOR .
A.1	Fortran Code for the Reflector Mirrors Construction
A.2	Fortran Code for the Collector Performance
A.3	Fortran Code for to Calculate ALL Construction and
	Performance Parameters of the CPV/T Collector
APPENDIX (B)	ENERGY VALUE COMPARISON
B.1	Thermodynamic Valuation
	B.1.1 Energy
	B.1.2 Primary-energy saving
	B.1.3 Exergy
B.2	Economic Valuation
	B.2.1 Open Market Approach
	B.2.2 Renewable Energy Market Approach
B.3	Environmental Valuation
	B.3.1 Avoided Emissions
	B.3.2 Life Cycle Emissions
APPENDIX (C)	OVERVIEW OF THE HEAT TRANSPORT
	EQUATION
APPENDIX (D)	EXPERIMENTAL DATA
D.1	Weather Data from the Meteonorm Software

LIST OF TABLES

Table		Page
1.1	Values used in the equivalent circuit J-V equation [33]	38
2.1	Parameter used in the thermal model for passive cooling	84
2.2	The solar cell coefficients, used to calculate the efficiency of the solar cell [106]	88
2.3	Values of coefficients used in the simulation program	93
2.4	Thermal and electrical efficiencies at zero reduced temperature $(T_{amb}=T_{inl})$	103
2.5	The input parameters for our simulation program and CPV-CAD program to	
	comparison	115
2.6	The output parameters for our simulation program and CPV-CAD program to	
	comparison	116
3.1	Input parameter to calculate the CPV/T system cost	142
3.2	Obtained results of the CPV/T system cost	142
3.3	The measured quantities used in the sample calculation of the uncertainty	
	analysis	145
3.4	The calculated quantities used in the uncertainty analysis	147
B.1	Exergetic comparison of electrical and thermal output	172
D.1	weather data for the 31/07/2011 and 01/08/2011	178
D.2	weather data for the 2/08/2011	178

LIST OF FIGURES

Figure		Page
1.1	Global share of total primary energy supply, 2007 [1]	18
1.2	Global anthropogenic greenhouse gas emissions in 2004 [2]	19
1.3	Solar spectral irradiance at AM0 and AM1.5	20
1.4a	Breakdown of the incoming solar energy [6]	22
1.4b	Earth's energy budget [7]	22
1.5	A flat-plate collector is an insulated, weatherproofed box containing a dark	
	absorber plate	24
1.6	Section in a flat-plate collector	25
1.7	Evacuated-tube panel, (a) typical design, (b) Section in a pipe of collector	25
1.8	Formed plastic collector, (a) typical design, (b) irradiant pipe inside pool	26
1.9	All components of solar collector system	27
1.10	Growth in the PV industry [19]	29
1.11	The p-n junction diode	30
1.12	A schematic depiction of a rudimentary solar cell	31
1.13	A triple junction solar cell structure [22]	33
1.14	(a) JV curve for solar cell (b) JV curves for an ANU concentrator solar cell	
	illuminated at various concentration ratios, expressed in 'suns', where $1x \ sun =$	
	1000 W/m ²	36
1.15	Illuminated J–V curve of the 40.7% 3-junction cell certified at NREL [30]	37
1.16	A solar cell equivalent circuit during normal operation	38
1.17	J-V curves for a solar cell with a range of values of series resistance,(a) one sun	
	illumination, and (b) 30 suns illumination	39
1.18	The expected future efficiencies of CPV cells, modules and systems source [46]	41
1.19	Geometry of the sun and earth	42
1.20	Cross-section of a Fresnel lens refractor (left) and a parabolic reflector (right)	44
1.21	(a) Linear Fresnel lens concentrator concept, and (b) $\mathrm{ENTECH^{\textsc{tm}}}$ 100 kW PV	
	power plant [51]	45

1.22	(a) The incoming light is concentrated by using thin Fresnel lenses,(b) Five Mega	
	Modules of Amonix $^{\rm TM}$ assembled on a 20 kWp generating system [51], and (c)	
	Amonix 35 kWp Fresnel lens, point focus concentrator PV system at Prescott,	
	Arizona	45
1.23	Test site for four 200 Wp Fresnel lens, point focus concentrator PV modules from	
	Daido Steel & Daido Metal	46
1.24	(a) Dish concentrator concepts, (b) The 220 kWp PV dish concentrator system on	
	the Anangu Pitjantjatjara lands, central Australia	46
1.25	University of Ferrara 100x concentration faceted dish concentrator	47
1.26	Parabolic trough collector [61]	48
1.27	(a) Parabolic mirrors reflecting the incoming sunlight onto a focus line, (b) The	
	33x concentration prototype EUCLIDES™ PV trough concentrator	49
1.28	California's solar two [61]	49
1.29	CPC with cylindrical absorber [64]	50
1.30	Compound parabolic concentrating (CPC) collector	51
1.31	Two versions of the sub modules with silicone secondary lenses [66]	51
1.32	Concept for solar TPV system with high-temperature (T $\geq 2000~^\circ\text{C})$ vacuum bulb	
	emitter [66]	52
1.33	(a) Passive heat sink for a single cell, (b) Passive cooling of a linear design (C)	
	Section of heat sink used by the ANU with fins fixed to an extruded base	53
1.34	Heat pipe based cooling system	54
1.35	Side view of a single PV/T collector strip with water as the working fluid	56
1.36	Side view of a PV/T air collector	56
1.37	Low concentration non-tracking PV/T collectors	57
1.38	Cross-section of a CPV/T collector similar to the receiver in our collector	58
1.39	J-V curves and power output for different V-troughs concentrator PV systems	
	assembled according to model-A, model-B and model-C [95]	61
1.40	Energy comparisons between tracking and fixed solar system [96]	62
1.41	All-season ecliptic of the sun at Fraunhofer ISE, Germany [51]	63
2.1	Summary of sample electrical-to-thermal ratios [100]	70

2.2	Structure of linear Fresnel mirror reflecting solar concentrator	73
2.3	Passive cooling; a) cell and mounting layers with thickness t, b) equivalent thermal	
	circuit of cell, mounting and cooling system	82
2.4	Active cooling; the thermal model of the CPV/T collector	85
2.5	The details of heat flows in the sheet-and-tube CPV/T-collector (includes heat	
	transfer to the coolant and heat losses from the front and back surfaces), together	
	with the temperature distribution	86
2.6	Thermal network describing a CPV/T collector	87
2.7	Flowchart for computer program	92
2.8	Home page of computer program [108]	94
2.9	3D view of flat mirror reflecting linear focus (Fresnel reflecting) PV concentrating	
	system [108]	95
2.10	Variation in tilt $(\alpha_i$) of linear Fresnel mirrors with different focuses distance (F) of	
	concentrator aperture, absorber width $a = 0.125 \text{ m}$	96
2.11	Variations in the width of mirror elements plotted against number of mirror with	
	different focuses distance of concentrator apparatus, absorber width a = 0.125 m	97
2.12	non- useful collector area plotted against number of mirror elements with Different	
	focuses distance of concentrator aperture	98
2.13	Variations in concentration ratio plotted against focuses distance for different	
	number of mirrors of a concentrator aperture, absorber width $a = 0.125$ m	99
2.14	Variation in the number of mirror elements and aperture width plotted against the	
	concentration ratio with constant focus distance of concentrator aperture (F = 1 m),	
	absorber width $a = 0.125 \text{ m}$	100
2.15	Variations in the CR plotted against the width a of the absorber with focus distance	
	F = 1.0 m, concentrator apparatus width $W = 1.7$ m	101
2.16	Distribution of local concentration ration (LCR) on the surface of a flat horizontal	
	absorber for the design of LFRSC, absorber width $a = 0.03$ m	102
2.17	Variation number of mirrors and concentrator width with focus distance	102
2.18	Thermal efficiency for the case with production of electricity of the various PV/T-	
	panels	104

2.19	Electrical efficiency of the various PV/T-panels	104
2.20	The length and the width of CPV/T collector plotted against the required power	
	with different focus distances, (a, b, c, d) different receiver width	105
2.21	Concentration ratio of a CPV/T collector plotted against the required power with	
	different focus distances, (a, b, c, d) different receiver width	106
2.22	Thermal energy of a CPV/T collector plotted against the required power with	
	different focus distance, (a, b, c, d) different receiver width	107
2.23	Gain energy of a CPV/T collector plotted against the required power with different	
	focus distance, (a, b, c, d) different receiver width	108
2.24	Effective temperatures of a CPV/T collector plotted against the mass flow rate for	
	the same focus distance and receiver width, (a, b, c, d) different required power	109
2.25	Effective temperatures of a CPV/T collector plotted against the mass flow rate for	
	the same required power and receiver width, (a, b, c) different focus distance	110
2.26	The variation of the CPV/T collector mass flow rate, Electric, Thermal, and CTE	
	efficiencies with the coolant outlet temperature (constant $\rm T_{inl}$ = 35 $^{\circ}\rm C)$	111
2.27	The variation of the CPV/T collector mass flow rate, Electric and Thermal powers	
	with the coolant outlet temperature (constant $T_{inl} = 35$ °C)	111
2.28	The variation of the CPV/T collector coolant inlet temperature, Electric, Thermal,	
	and CTE efficiencies with the coolant outlet temperature (constant \dot{m} =	
	0.01kg/sec)	112
2.29	The variation of the CPV/T collector coolant inlet temperature, Electric and	
	Thermal powers with the coolant outlet temperature (constant $\dot{m} = 0.01 \text{kg/sec}$)	113
2.30	The variation of the CPV/T collector coolant inlet temperature, Electric, Thermal,	
	and CTE efficiencies with the coolant outlet temperature, for $\dot{m}=0.01 \text{kg/sec}$ and	
	fixed coolant temperature rise of 15°C and 30°C	114
2.31	Concentration ratio and the width of a CPV/T collector plotted against the focus	
	distance with different power required	114
2.32	Comparison of the CPV/T simulation program with CPV-CAD program results	117
3.1	CPV/T system at the State Engineering University of Armenia, (a) CPV/T	
	collector details, (b) Photograph of CPV/T collector prototype	122

3.2	Schematic diagram of the mirror(glass-on-metal laminate)	123
3.3 (a)	Monocrystalline silicon Concentrator solar cells	125
3.3 (b)	Photograph of solar cell bonded to aluminum bar	125
3.4	Photograph of thermal receiver	126
3.5	Isothermal block arrangement for thermocouples	127
3.6	Calibration Curve of all Thermocouples of TOC-M type	127
3.7	Calibration Curve of all Thermocouples of KMT-178 type	128
3.8	Layout drawing of the electronic load for measuring JV-characteristics	128
3.9	Current-voltage measurement circuit	130
3.10	Whole experimental prototype connecting and measuring devices circuit	130
3.11	Solar radiation with different day time for three days	133
3.12	Ambient temperature with different day time for three days	134
3.13	Current-voltage characteristics of cell under normal and concentrated irradiance on	
	the 31/07/2011	134
3.14	Power-voltage characteristics of cell under normal and concentrated irradiance on	
	the 31/07/2011	135
3.15	Thermal performance of prototype on the 1 st August 2011	136
3.16	Efficiency curves for the CPV/T receiver on the 1st August 2011	137
3.17	Electrical efficiency for various mean fluid temperatures on the 1st August 2011	138
3.18	Thermal efficiency of the prototype with and without electric load on the $2^{\mbox{\scriptsize nd}}$	
	August 2011	139
3.19	Thermal efficiency of the CPV/T collector using direct radiation (left) and using	
	total (direct and diffuse) radiation (right) on the 1st August 2011	139
3.20	Tank fluid temperatures for different position, on the 1st August 2011	140
3.21	Thermal performance increase versus adhesive conductivity increase	141
3.22	Different CPV system uses linear focus parabolic and flat mirror reflecting	143
3.23	The cost of different CPV systems in versus required power output (F=1.6m)	143
3.24	The different CPV/T systems price for 1kW output power	144